18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)模型轉(zhuǎn)成TensorRT引擎的流程

NVIDIA英偉達(dá)企業(yè)解決方案 ? 來源:NVIDIA英偉達(dá)企業(yè)解決方案 ? 作者:NVIDIA英偉達(dá)企業(yè)解 ? 2022-05-25 11:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

前面我們花了很多力氣在 TAO 上面訓(xùn)練模型,其最終目的就是要部署到推理設(shè)備上發(fā)揮功能。除了將模型訓(xùn)練過程進(jìn)行非常大幅度的簡化,以及整合遷移學(xué)習(xí)等功能之外,TAO 還有一個(gè)非常重要的任務(wù),就是讓我們更輕松獲得 TensorRT 加速引擎。

將一般框架訓(xùn)練的模型轉(zhuǎn)換成 TensorRT 引擎的過程并不輕松,但是 TensorRT 所帶來的性能紅利又是如此吸引人,如果能避開麻煩又能享受成果,這是多么好的福利!

下圖是將一般模型轉(zhuǎn)成 TesnorRT 的標(biāo)準(zhǔn)步驟,在中間 “Builder” 右邊的環(huán)節(jié)是相對(duì)單純的,比較復(fù)雜的是 “Builder” 左邊的操作過程

9d325b6e-db60-11ec-ba43-dac502259ad0.png

下圖就上圖 “NetworkDefinition” 比較深入的內(nèi)容,TensorRT 提供 Caffe、uff 與 ONNX 三種解析器,其中 Caffe 框架已淡出市場(chǎng)、uff 僅支持 TensorFlow 框架,其他的模型就需要透過 ONNX 交換格式進(jìn)行轉(zhuǎn)換。

9d87b744-db60-11ec-ba43-dac502259ad0.png

這里以 TensorRT 所提供的 YOLOv3 范例來做范例,在安裝 Jetpack 4.6 版本的 Jetson Nano 設(shè)備上進(jìn)行體驗(yàn),請(qǐng)進(jìn)入到 TesnorRT 的 YOLOv3 范例中:

cd  /usr/src/tensorrt/samples/python/yolov3_onnx

?

根據(jù)項(xiàng)目的 README.md 指示,我們需要先為工作環(huán)境添加依賴庫,不過由于部分庫的版本關(guān)系,請(qǐng)先將 requirements.txt 的第 1、3 行進(jìn)行以下的修改:

numpy==1.19.4protobuf>=3.11.3onnx==1.10.1Pillow; python_version<"3.6"Pillow==8.1.2; python_version>="3.6"pycuda<2021.1

然后執(zhí)行以下指令進(jìn)行安裝:

python3 -m pip install -r requirements.txt

接下來需要先下載 download.yml 里面的三個(gè)文件,

wget https://pjreddie.com/media/files/yolov3.weights wget https://raw.githubusercontent.com/pjreddie/darknet/f86901f6177dfc6116360a13cc06ab680e0c86b0/cfg/yolov3.cfg wgethttps://github.com/pjreddie/darknet/raw/f86901f6177dfc6116360a13cc06ab680e0c86b0/data/dog.jpg

然后就能執(zhí)行以下指令,將 yolov3.weights 轉(zhuǎn)成 yolov3.onnx

./yolov3_to_onnx.py  -d  /usr/src/tensorrt

這個(gè)執(zhí)行并不復(fù)雜,是因?yàn)?TensorRT 已經(jīng)提供 yolov3_to_onnx.py 的 Python 代碼,但如果將代碼打開之后,就能感受到這 750+ 行代碼要處理的內(nèi)容是相當(dāng)復(fù)雜,必須對(duì) YOLOv3 的結(jié)構(gòu)與算法有足夠了解,包括解析 yolov3.cfg 的 788 行配置。想象一下,如果這個(gè)代碼需要自行開發(fā)的話,這個(gè)難度有多高!

接下去再用下面指令,將 yolov3.onnx 轉(zhuǎn)成 yolov3.trt 加速引擎:

./onnx_to_tensorrt.py  -d  /usr/src/tensorrt

以上是從一般神經(jīng)網(wǎng)絡(luò)模型轉(zhuǎn)成 TensorRT 加速引擎的標(biāo)準(zhǔn)步驟,這需要對(duì)所使用的神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)層、數(shù)學(xué)公式、參數(shù)細(xì)節(jié)等等都有相當(dāng)足夠的了解,才有能力將模型先轉(zhuǎn)換成 ONNX 文件,這是技術(shù)門檻比較高的環(huán)節(jié)。

  • TAO 工具訓(xùn)練的模型轉(zhuǎn)成 TensorRT 引擎的工具

用 TAO 工具所訓(xùn)練、修剪并匯出的 .etlt 文件,可以跳過上述過程,直接在推理設(shè)備上轉(zhuǎn)換成 TensorRT 加速引擎,我們完全不需要了解神經(jīng)網(wǎng)絡(luò)的任何結(jié)構(gòu)與算法內(nèi)容,直接將 .etlt 文件復(fù)制到推理設(shè)備上,然后用 TAO 所提供的轉(zhuǎn)換工具進(jìn)行轉(zhuǎn)換就可以。

這里總共需要執(zhí)行三個(gè)步驟:

1、下載 tao-converter 工具,并調(diào)試環(huán)境:

請(qǐng)根據(jù)以下 Jetpack 版本,下載對(duì)應(yīng)的 tao-converter 工具:

Jetpack 4.4:https://developer.nvidia.com/cuda102-trt71-jp44-0 Jetpack 4.5:https://developer.nvidia.com/cuda110-cudnn80-trt72-0 Jetpack 4.6:https://developer.nvidia.com/jp46-20210820t231431z-001zip

下載壓縮文件后執(zhí)行解壓縮,就會(huì)生成 tao-converterREADME.txt 兩個(gè)文件,再根據(jù) README.txt 的指示執(zhí)行以下步驟:

(1)安裝 libssl-dev 庫:

sudo  apt  install  libssl-dev

(2) 配置環(huán)境,請(qǐng)?jiān)?strong> ~/.bashrc 最后面添加兩行設(shè)置:

export TRT_LIB_PATH=/usr/lib/aarch64-linux-gnuexportTRT_INCLUDE_PATH=/usr/include/aarch64-linux-gnu

(3) 將 tao-convert 變成可執(zhí)行文件:

source ~/.bashrcchmod  +x  tao-convertersudocptao-converter/usr/local/bin

2、安裝 TensorRT 的 OSS (Open Source Software)

這是 TensorRT 的開源插件,項(xiàng)目在 https://github.com/NVIDIA/TensorRT,下面提供的安裝說明非常復(fù)雜,我們將繁瑣的步驟整理之后,就是下面的步驟:

export  ARCH=請(qǐng)根據(jù)設(shè)備進(jìn)行設(shè)置,例如Nano為53、NX為72、Xavier為62export  TRTVER=請(qǐng)根據(jù)系統(tǒng)的TensorRT版本,例如Jetpack 4.6為8.0.1git  clone  -b  $TRTVER  https://github.com/nvidia/TensorRT  TRToss cd  TRToss/git checkout  -b  $TRTVER  &&  git  submodule  update  --init  --recursivemkdir  -p  build  &&  cd  buildcmake .. -DGPU_ARCHS=$ARCH-DTRT_LIB_DIR=/usr/lib/aarch64-linux-gnu/-DCMAKE_C_COMPILER=/usr/bin/gcc-DTRT_BIN_DIR=`pwd`/out-DTRT_PLATFORM_ID=aarch64-DCUDA_VERSION=10.2make  nvinfer_plugin  -j$(nproc)sudomv/usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so.8.0.1  /usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so.8.0.1.baksudocplibnvinfer_plugin.so.8.0.1/usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so.8.0.1

這樣就能開始用 tao-converter 來將 .etlt 文件轉(zhuǎn)換成 TensorRT 加速引擎了。

3、用 tao-converter 進(jìn)行轉(zhuǎn)換

(1)首先將 TAO 最終導(dǎo)出 (export) 的文件復(fù)制到 Jetson Nano 上,例如前面的實(shí)驗(yàn)中最終導(dǎo)出的文件 ssd_resnet18_epoch_080.etlt

(2)在 Jetson Nano 上執(zhí)行 TAO 的 ssd.ipynb 最后所提供的轉(zhuǎn)換指令,如下:

%set_env KEY=tao converter  -k  $KEY -d  3,300,300     -o  NMS     -e  ssd_resnet18_epoch_080.trt   # 自己設(shè)定輸出名稱    -m  16     -t  fp16                       # 使用export時(shí)相同精度    -i  nchw ssd_resnet18_epoch_080.etlt

這樣就能生成在 Jetson Nano 上的 ssd_resnet18_epoch_080.trt 加速引擎文件,整個(gè)過程比傳統(tǒng)方式要簡便許多。

原文標(biāo)題:NVIDIA Jetson Nano 2GB系列文章(64):將模型部署到Jetson設(shè)備

文章出處:【微信公眾號(hào):NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

審核編輯:湯梓紅
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5444

    瀏覽量

    108605
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5587

    瀏覽量

    123764
  • 模型訓(xùn)練
    +關(guān)注

    關(guān)注

    0

    文章

    20

    瀏覽量

    1511

原文標(biāo)題:NVIDIA Jetson Nano 2GB系列文章(64):將模型部署到Jetson設(shè)備

文章出處:【微信號(hào):NVIDIA-Enterprise,微信公眾號(hào):NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    DeepSeek R1 MTP在TensorRT-LLM中的實(shí)現(xiàn)與優(yōu)化

    。我們?cè)谥暗牟┛蚚1] 中介紹了 DeepSeek-R1 模型實(shí)現(xiàn)超低推理延遲的關(guān)鍵優(yōu)化措施。本文將深入探討 TensorRT-LLM 中的 MTP 實(shí)現(xiàn)與優(yōu)化。
    的頭像 發(fā)表于 08-30 15:47 ?3581次閱讀
    DeepSeek R1 MTP在<b class='flag-5'>TensorRT</b>-LLM中的實(shí)現(xiàn)與優(yōu)化

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對(duì)話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3794次閱讀
    自動(dòng)駕駛中Transformer大<b class='flag-5'>模型</b>會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    RK3128 Android 7.1 進(jìn)入深度休眠流程分析

    RK3128 Android 7.1 進(jìn)入深度休眠流程分析RK3128是瑞芯微電子推出的一款低功耗四核Cortex-A7處理器,運(yùn)行Android 7.1系統(tǒng)時(shí)進(jìn)入深度休眠(Deep Sleep
    發(fā)表于 07-22 10:45

    信而泰×DeepSeek:AI推理引擎驅(qū)動(dòng)網(wǎng)絡(luò)智能診斷邁向 “自愈”時(shí)代

    DeepSeek-R1:強(qiáng)大的AI推理引擎底座DeepSeek是由杭州深度求索人工智能基礎(chǔ)技術(shù)研究有限公司開發(fā)的新一代AI大模型。其核心優(yōu)勢(shì)在于強(qiáng)大的推理引擎能力,融合了自然語言處理(
    發(fā)表于 07-16 15:29

    寧暢與與百度文心大模型展開深度技術(shù)合作

    近日,百度正式開源文心大模型4.5系列模型。作為文心開源合作伙伴,寧暢在模型開源首日即實(shí)現(xiàn)即刻部署,做到“開源即接入、發(fā)布即可用”。據(jù)悉,文心4.5開源系列全部基于飛槳深度
    的頭像 發(fā)表于 07-07 16:26 ?502次閱讀

    如何使用Docker部署大模型

    隨著深度學(xué)習(xí)和大模型的快速發(fā)展,如何高效地部署這些模型成為了一個(gè)重要的挑戰(zhàn)。Docker 作為一種輕量級(jí)的容器化技術(shù),能夠?qū)?b class='flag-5'>模型及其依賴環(huán)境
    的頭像 發(fā)表于 05-24 16:39 ?685次閱讀

    模型時(shí)代的深度學(xué)習(xí)框架

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 在 CNN時(shí)代 ,AI模型的參數(shù)規(guī)模都在百萬級(jí)別,僅需在單張消費(fèi)類顯卡上即可完成訓(xùn)練。例如,以業(yè)界知名的CNN模型: ResNet50 為例,模型參數(shù)
    的頭像 發(fā)表于 04-25 11:43 ?517次閱讀
    大<b class='flag-5'>模型</b>時(shí)代的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>框架

    聆思CSK6大模型語音開發(fā)板接入DeepSeek資料匯總(包含深度求索/火山引擎/硅基流動(dòng)華為昇騰滿血版)

    調(diào)用DeepSeek節(jié)點(diǎn),最終將大模型輸出的結(jié)果進(jìn)行語音合成實(shí)現(xiàn)端側(cè)播報(bào) 下載工程模板導(dǎo)入,配置參數(shù)后綁定開發(fā)板ID即可。 關(guān)鍵參數(shù)說明(以火山引擎版為例): HOST
    發(fā)表于 03-06 17:02

    在OpenVINO?工具套件的深度學(xué)習(xí)工作臺(tái)中無法導(dǎo)出INT8模型怎么解決?

    無法在 OpenVINO? 工具套件的深度學(xué)習(xí) (DL) 工作臺(tái)中導(dǎo)出 INT8 模型
    發(fā)表于 03-06 07:54

    Flexus X 實(shí)例 ultralytics 模型 yolov10 深度學(xué)習(xí) AI 部署與應(yīng)用

    前言: ???深度學(xué)習(xí)新紀(jì)元,828 B2B 企業(yè)節(jié) Flexus X 實(shí)例特惠!想要高效訓(xùn)練 YOLOv10 模型,實(shí)現(xiàn)精準(zhǔn)圖像識(shí)別?Flexus X 以卓越算力,助您輕松駕馭大規(guī)模數(shù)據(jù)集,加速
    的頭像 發(fā)表于 12-24 12:24 ?1082次閱讀
    Flexus X 實(shí)例 ultralytics <b class='flag-5'>模型</b> yolov10 <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b> AI 部署與應(yīng)用

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?2613次閱讀

    pcie在深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU
    的頭像 發(fā)表于 11-13 10:39 ?1697次閱讀

    深度學(xué)習(xí)模型的魯棒性優(yōu)化

    深度學(xué)習(xí)模型的魯棒性優(yōu)化是一個(gè)復(fù)雜但至關(guān)重要的任務(wù),它涉及多個(gè)方面的技術(shù)和策略。以下是一些關(guān)鍵的優(yōu)化方法: 一、數(shù)據(jù)預(yù)處理與增強(qiáng) 數(shù)據(jù)清洗 :去除數(shù)據(jù)中的噪聲和異常值,這是提高模型魯棒
    的頭像 發(fā)表于 11-11 10:25 ?1866次閱讀

    中科創(chuàng)達(dá)與火山引擎達(dá)成深度合作

    近日,中科創(chuàng)達(dá)與火山引擎在成都盛美利亞酒店隆重舉行深度合作簽署儀式?;鹕?b class='flag-5'>引擎汽車行業(yè)總經(jīng)理?xiàng)盍?、中科?chuàng)達(dá)執(zhí)行總裁常衡生見證簽約,火山引擎汽車出行戰(zhàn)略客戶總經(jīng)理梁民忞、中科創(chuàng)達(dá)副總裁兼
    的頭像 發(fā)表于 11-04 14:34 ?910次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1969次閱讀