18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

端到端發(fā)展趨勢下,云算力如何賦能智能駕駛技術躍遷?

智駕最前沿 ? 來源:智駕最前沿 ? 作者:智駕最前沿 ? 2025-09-08 09:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

[首發(fā)于智駕最前沿微信公眾號]隨著智能駕駛輔助系統(tǒng)的發(fā)展,汽車行業(yè)正在從傳統(tǒng)模塊化架構向端到端(End-to-End,E2E)模型邁進。端到端模型的核心理念是將感知、決策和控制功能整合到同一深度學習網絡中,讓系統(tǒng)直接從傳感器數(shù)據(jù)生成車輛控制指令。這種方法在提升系統(tǒng)響應速度、優(yōu)化復雜場景表現(xiàn)以及減少模塊間誤差積累方面展現(xiàn)出顯著優(yōu)勢,但同時,為了滿足足夠龐大的智能駕駛輔助需求,端到端模型也面臨數(shù)據(jù)量、算力需求、可解釋性和安全性等多重挑戰(zhàn)。2025年8月28日,在智能汽車大會2025上,華為云CloudVeo智能駕駛云服務正式發(fā)布,為端到端模型研發(fā)提供了強有力的基礎設施和算力保障,或將為行業(yè)發(fā)展帶來新機遇。

wKgZO2i-LoSAbamTAAAv_mXKWko686.jpg

華為云CloudVeo智能駕駛云服務解決方案全景圖

wKgZPGi-LoWARwjMAAAQo00DEvw581.jpg

端到端模型的技術價值與現(xiàn)實挑戰(zhàn)

傳統(tǒng)智能駕駛輔助系統(tǒng)采用感知、決策、規(guī)劃和控制分模塊處理,每個模塊通過明確接口傳遞信息。其優(yōu)點在于可解釋性強、模塊獨立易于維護,但在復雜場景下,信息傳遞延遲、模塊間耦合問題和算法迭代不同步的缺陷就會凸顯。像是在城市交叉口、密集車流或雨雪天氣等邊緣場景中,傳統(tǒng)模塊化方法往往難以快速響應多變環(huán)境,容易產生決策滯后或路徑規(guī)劃不一致等問題。

端到端模型通過統(tǒng)一網絡直接映射傳感器輸入到車輛控制指令,整體優(yōu)化車輛行為,使車輛在復雜場景下的表現(xiàn)更連貫自然。這種方式充分利用深度學習的優(yōu)勢,將視覺、雷達、激光雷達等多模態(tài)數(shù)據(jù)輸入模型進行聯(lián)合訓練,系統(tǒng)可以同時學習道路特征、交通信號、周邊車輛行為以及潛在風險。這種整體優(yōu)化減少了模塊間誤差累積,使得車輛在復雜環(huán)境下的行為更為連貫和自然。

端到端方案表面上看起來非常理想,因為它把感知、決策和控制全部整合在一起,實現(xiàn)了從傳感器輸入到車輛動作輸出的閉環(huán)。但在真實駕駛環(huán)境中,要讓這種方案可靠地工作,仍有不少挑戰(zhàn)。訓練端到端模型需要大量且多樣化的數(shù)據(jù),這就要求覆蓋城市復雜路口、鄉(xiāng)村道路、高速公路,還要考慮暴雨、濃霧、夜間行駛和積雪等極端天氣的情況。每一種場景都有不同的視覺和雷達特征,模型需要學會從多種傳感器信息中提取關鍵特征,并在特殊情況下作出安全決策。如果數(shù)據(jù)不夠全面,模型在未見過的場景里就可能表現(xiàn)不穩(wěn)定,這對安全是很大的隱患。

端到端模型對算力的要求也非常高。深度神經網絡通常要處理高分辨率圖像、激光雷達點云和毫米波雷達數(shù)據(jù),信息量極大。訓練模型需要處理數(shù)十萬小時的駕駛數(shù)據(jù),同時完成多模態(tài)特征融合、時序建模和決策優(yōu)化。為了讓模型不斷迭代和升級,需要大規(guī)模GPU集群、高速存儲和高帶寬內存來支撐。而在車輛端,模型又必須在有限算力下快速做出決策,保證低延遲和高精度,這對模型壓縮和推理優(yōu)化提出了很高要求。

還有一個問題就是可解釋性。端到端模型的決策是由大量參數(shù)的非線性組合產生的,內部邏輯不容易直接理解。對于安全敏感的駕駛任務,監(jiān)管部門和車輛使用者都希望了解系統(tǒng)為什么會在某個場景做出某個動作。像是在復雜路口是否選擇變道或在濕滑路面是否要減速,這些決策邏輯在模型內部的權重是很難觀察的。這也讓測試、驗證和回溯分析變得復雜,需要通過仿真、對抗測試和因果分析等方法,確保模型在各種邊緣場景下仍然可靠。

智駕最前沿以為,對于智能駕駛行業(yè)而言,端到端模型的發(fā)展已成為不可逆的趨勢,其結構可能會在多模態(tài)信息融合和時空特征建模方面不斷演進。像VLA(Vision-Language-Action)與世界模型的結合,可以讓系統(tǒng)在復雜道路環(huán)境中獲得更精準的感知和預測能力,實現(xiàn)對周圍動態(tài)場景的深度理解。同時,云端與車端的協(xié)同模式將逐漸成為主流,高性能算力集中在云端,車輛端運行輕量化模型,使復雜計算能夠在保證實時響應的前提下落地到每一輛車上。端到端模型的可解釋性和驗證機制也將不斷完善,通過仿真驗證、行為約束建模以及可解釋AI方法,可以對系統(tǒng)決策進行深入分析和安全保障。華為云CloudVeo智能駕駛云服務針對這些趨勢就提供了全面支持,依托超強算力和全國分布式汽車專區(qū),為端到端模型的訓練、迭代和落地提供高效、穩(wěn)定的技術保障,使智能駕駛輔助系統(tǒng)能夠更可靠地應對實際道路場景。

wKgZPGi-LoaAA1_kAAAR42n7O-I671.jpg

CloudMatrix384超節(jié)點與云端算力加速

端到端模型對算力的依賴極其強烈,單靠車端算力難以完成大規(guī)模深度學習訓練和復雜多模態(tài)數(shù)據(jù)處理。華為云推出的CloudMatrix384超節(jié)點計算架構,為端到端模型訓練提供了行業(yè)領先的算力平臺。今年4月,該架構在蕪湖數(shù)據(jù)中心實現(xiàn)了規(guī)?;渴鸩⒙氏韧度肷逃?,成為國內首個真正落地的大規(guī)模超節(jié)點集群,為智能駕駛模型的快速迭代和高效訓練奠定了堅實基礎。

wKgZO2i-LoaAfQkzAABgfOCvDrI252.jpg

CloudMatrix384超節(jié)點計算架構

該平臺將384顆昇騰NPU和192顆鯤鵬CPU通過全新高速網絡MatrixLink全對等互聯(lián),形成一臺超級“AI服務器”,支持高帶寬緩存和大容量存儲,為模型訓練提供了充足的資源,在端到端和VLA模型上,其性能優(yōu)于H100 GPU,使得大規(guī)模訓練成為可能。現(xiàn)階段,已有100萬輛智能車依托云上昇騰算力支持得到了落地。

云端算力不僅優(yōu)化訓練階段,還會顯著加速仿真驗證過程。傳統(tǒng)生成式仿真場景構建通常需要一周時間,而在CloudMatrix384超節(jié)點算力平臺上,這一過程可縮短至5分鐘,版本迭代周期從月級縮短至周級。這意味著開發(fā)團隊能夠更快速地測試端到端模型在極端場景、低速泊車及緊急避障等多樣化條件下的表現(xiàn)。結合AI-Native智算存儲,高性能緩存容量達128PB,緩存帶寬提升至12TB/s,大幅提升了數(shù)據(jù)讀取和模型訓練效率,為復雜模型提供了穩(wěn)定、可擴展的算力支持。

“以云助車”的方案也會使端到端模型在車端運行時更為輕量化。車輛主要承擔實時數(shù)據(jù)采集和控制指令執(zhí)行,而復雜計算和模型推理遷移至云端,實現(xiàn)云端模型訓練與端側應用的高效協(xié)同。這種模式不僅優(yōu)化了端到端模型的實際表現(xiàn),還在泊車和低速巡航場景中提高了成功率和操作平滑度。華為云方案通過云端模型輔助,讓泊車成功率提升15%,端到端泊車效率顯著優(yōu)化。

wKgZPGi-LoeAH3qEAAASG3BOmsQ918.jpg

全國多專區(qū)布局,全國覆蓋都可行?

算力優(yōu)化必須依賴網絡與基礎設施的高效布局。華為云在全國布局了貴安、烏蘭察布和即將上線的蕪湖三大汽車專區(qū)。本次貴安專區(qū)上線實現(xiàn)跨越南北的雙專區(qū)布局,與烏蘭察布專區(qū)形成聯(lián)動,為端到端模型訓練與應用提供低時延、高可用的分布式環(huán)境。

wKgZO2i-LoiAE_a5AACwgoakN_E008.jpg

華為云貴安汽車專區(qū)發(fā)布儀式

多區(qū)域多活架構的設計,使得端到端模型在跨區(qū)域出行時,能夠獲得一致的智能駕駛輔助體驗,車云時延可降低60%,系統(tǒng)可用性將達到99.999%,為端到端模型的商業(yè)落地和大規(guī)模部署提供堅實基礎。分布式布局還允許多地資源協(xié)同調度,大幅提升端到端模型訓練效率,支持不同車型、不同應用場景的快速迭代。這種全國一體化算力網絡,使華為云在智能駕駛輔助系統(tǒng)領域從算力提供者升級為產業(yè)賦能者,為車企模型研發(fā)和技術創(chuàng)新提供全方位支撐。

此外,多專區(qū)協(xié)同還為未來數(shù)據(jù)聚合、模型遷移學習和仿真場景擴展提供了基礎。通過分布式資源調度,端到端模型可在全國范圍內共享高質量訓練數(shù)據(jù)和優(yōu)化經驗,實現(xiàn)跨車型、跨場景的快速泛化,降低單一車企研發(fā)成本,提高整體產業(yè)效率。

wKgZPGi-LoiAAI8aAABCs1_f7n8241.jpg

wKgZO2i-LoiAHzVeAAASAJELks8584.jpg

行業(yè)合作與端到端模型落地實踐

端到端模型的研發(fā)和應用離不開產業(yè)鏈的協(xié)同,華為云通過與長安科技、廣汽集團、奇瑞、一汽豐田等頭部車企的深度合作,把CloudMatrix384超節(jié)點、AI-Native智算存儲以及多區(qū)域汽車專區(qū)的基礎設施優(yōu)勢,真正轉化成了可落地的成果。

華為云EI服務產品部部長尤鵬與長安科技人工智能基礎與應用副總經理梁鋒華在智能汽車大會2025上聯(lián)合發(fā)布了“搭載華為云CloudMatrix384超節(jié)點的長安天樞智駕”,這款智駕方案首次搭載CloudMatrix384超節(jié)點,使長安成為首個依托國產算力開展智能駕駛研發(fā)的央企。依托華為云提供的高帶寬和大容量存儲集群,雙方不僅實現(xiàn)了自動駕駛模型的高效訓練,還在VLA、端到端等多種模型上完成了適配,展示了AI技術推動汽車產業(yè)智能化發(fā)展的新可能。

wKgZO2i-LomAQlhfAACfJXgWUmg273.jpg

華為云CloudMatrix384超節(jié)點的長安天樞智駕發(fā)布儀式

廣汽集團通過“星云空間-廣汽X華為云”云車機技術,將座艙算力上云,實現(xiàn)車機性能提升、卡頓問題解決,同時降低核心芯片成本20%,應用集成周期下降50%。這說明智能座艙模型不僅依賴算力和算法,還需要整體系統(tǒng)架構的優(yōu)化,包括車端與云端的協(xié)同計算、數(shù)據(jù)傳輸優(yōu)化以及軟件集成能力。

wKgZPGi-LomAB0k8AAARwcz1hbg946.jpg

端到端未來會如何發(fā)展?

在智能駕駛領域,端到端模型的發(fā)展正在朝著更高復雜度和多模態(tài)融合方向演進。隨著車輛配備的傳感器類型不斷增加,道路環(huán)境也愈發(fā)復雜,端到端模型必須能夠同時處理視覺、雷達、激光等多模態(tài)信息,并結合時空信息建模,從而準確理解周圍環(huán)境。

VLA模型與世界模型的結合,為系統(tǒng)提供了長時序的環(huán)境預測能力和優(yōu)化的行為決策能力,這在復雜交叉路口、高速行駛及多車混行等場景中,能夠顯著提高安全性和決策的可靠性。

與此同時,云端與車端的協(xié)同模式逐漸成為主流。端到端模型在訓練和推理階段對算力的需求極高,云端可以提供集中化的大規(guī)模計算資源,用于訓練復雜模型、構建高精度仿真場景以及加速模型迭代,而車端則承擔實時數(shù)據(jù)采集和控制任務,保證車輛在道路上的低延遲響應和穩(wěn)定表現(xiàn)。這種云端與車端協(xié)作的模式,不僅讓復雜模型能夠在實際駕駛中穩(wěn)定運行,也為智能駕駛輔助系統(tǒng)的大規(guī)模落地提供了技術支撐。

可解釋性和驗證體系的完善也是端到端模型發(fā)展的關鍵環(huán)節(jié)。端到端模型的決策邏輯本質上較難直觀理解,因此需要借助可解釋AI方法、模型仿真驗證以及行為安全約束建模等手段,構建完整的驗證體系,確保模型在各種道路場景下的可控性和安全性。

華為云通過CloudVeo智能駕駛云服務,正順應這些技術趨勢,提供強大算力、低延遲分布式架構和產業(yè)鏈協(xié)同支持,助力車企高效研發(fā)端到端模型,實現(xiàn)智能駕駛輔助系統(tǒng)的規(guī)模化應用。

wKgZO2i-LoqAaZGpAAATCLDSk7w087.jpg

最后的話

端到端智能駕駛輔助系統(tǒng)正引領智能駕駛技術的發(fā)展方向。通過統(tǒng)一網絡直接映射傳感器數(shù)據(jù)到控制指令,系統(tǒng)在復雜場景中展現(xiàn)出連貫性和高效性優(yōu)勢。華為云CloudVeo智能駕駛云服務通過CloudMatrix384超節(jié)點和全國三大汽車專區(qū),提供了從訓練到仿真、從算力到分布式部署的完整技術支撐,推動端到端模型從實驗驗證向產業(yè)化落地轉化。未來,隨著模型復雜度提升、云端協(xié)同模式普及以及可解釋性與驗證體系完善,端到端模型將在智能駕駛輔助系統(tǒng)中發(fā)揮核心作用,為行業(yè)智能化升級提供持續(xù)動力。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 智能駕駛
    +關注

    關注

    5

    文章

    2899

    瀏覽量

    50745
  • 自動駕駛
    +關注

    關注

    791

    文章

    14560

    瀏覽量

    174609
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    ”智駕芯片,英偉達DRIVE Thor接棒,車企自研芯片對標行業(yè)領先

    智駕火了一整年,如今廠商們抓緊推出量產方案,并部署新的芯片和。業(yè)界討論比較多的
    的頭像 發(fā)表于 12-09 09:05 ?4052次閱讀

    自動駕駛中常提的一段式(單段)是個啥?

    自動駕駛技術發(fā)展,催生出技術的應用,一段式
    的頭像 發(fā)表于 10-18 10:16 ?1136次閱讀

    一文讀懂特斯拉自動駕駛FSD從輔助的演進

    、控制等環(huán)節(jié)各自負責不同的功能,各模塊用顯式代碼和規(guī)則來完成任務。隨著數(shù)據(jù)規(guī)模和增長,特斯拉開始把更多功能放到機器學習模型里,尤其是從2024年推出的V12(標注為“Supervised”)開始,特斯拉開始大幅度推進“
    的頭像 發(fā)表于 10-11 09:13 ?201次閱讀
    一文讀懂特斯拉自動<b class='flag-5'>駕駛</b>FSD從輔助<b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>的演進

    黑芝麻智能全棧式輔助駕駛系統(tǒng)的應用場景

    黑芝麻智能推出的全新一代全棧輔助駕駛系統(tǒng),以武當C1200系列高
    的頭像 發(fā)表于 09-09 17:19 ?1915次閱讀

    為什么自動駕駛大模型有黑盒特性?

    [首發(fā)于智駕最前沿微信公眾號]隨著自動駕駛技術落地,(End-to-End)大模型也成為行業(yè)研究與應用的熱門方向。相較于傳統(tǒng)自動
    的頭像 發(fā)表于 07-04 16:50 ?471次閱讀
    為什么自動<b class='flag-5'>駕駛</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大模型有黑盒特性?

    物聯(lián)網未來發(fā)展趨勢如何?

    ,人們才會更加信任和接受物聯(lián)網技術。 綜上所述,物聯(lián)網行業(yè)的未來發(fā)展趨勢非常廣闊。智能家居、工業(yè)互聯(lián)網、智慧城市、醫(yī)療保健以及數(shù)據(jù)安全和隱私保護都將成為物聯(lián)網行業(yè)的熱點領域。我們有理由相信,在不久的將來,物聯(lián)網將進一步改變我們
    發(fā)表于 06-09 15:25

    華邦電子創(chuàng)新存儲智能

    人工智能技術的飛速發(fā)展,#側AI 正在成為智能設備發(fā)展的重要趨勢。華邦電子正憑借其卓越存儲
    的頭像 發(fā)表于 05-14 09:59 ?941次閱讀
    華邦電子創(chuàng)新存儲<b class='flag-5'>賦</b><b class='flag-5'>能</b><b class='flag-5'>端</b>側<b class='flag-5'>智能</b><b class='flag-5'>端</b>側

    一文帶你厘清自動駕駛架構差異

    [首發(fā)于智駕最前沿微信公眾號]隨著自動駕駛技術飛速發(fā)展,智能駕駛系統(tǒng)的設計思路也經歷了從傳統(tǒng)模塊化架構
    的頭像 發(fā)表于 05-08 09:07 ?662次閱讀
    一文帶你厘清自動<b class='flag-5'>駕駛</b><b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>架構差異

    蘋芯科技 N300 存一體 NPU,開啟側 AI 新征程

    隨著側人工智能技術的爆發(fā)式增長,智能設備對本地效的需求日益提高。而傳統(tǒng)馮·諾依曼架構在
    的頭像 發(fā)表于 05-06 17:01 ?774次閱讀
    蘋芯科技 N300 存<b class='flag-5'>算</b>一體 NPU,開啟<b class='flag-5'>端</b>側 AI 新征程

    小米汽車智駕技術介紹

    隨著智能駕駛技術發(fā)展,越來越多企業(yè)紛紛進入汽車行業(yè),希望分得獨屬于自己的一杯羹。但在市場的選擇
    的頭像 發(fā)表于 03-31 18:17 ?4493次閱讀
    小米汽車<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>智駕<b class='flag-5'>技術</b>介紹

    【一文看懂】什么是?

    隨著物聯(lián)網(IoT)、人工智能和5G技術的快速發(fā)展,正逐漸成為
    的頭像 發(fā)表于 02-24 12:02 ?2423次閱讀
    【一文看懂】什么是<b class='flag-5'>端</b>側<b class='flag-5'>算</b><b class='flag-5'>力</b>?

    自動駕駛技術研究與分析

    傳遞和全局優(yōu)化的優(yōu)勢,成為智能駕駛技術發(fā)展的重要方向。與傳統(tǒng)模塊化架構相比,
    的頭像 發(fā)表于 12-19 13:07 ?1250次閱讀

    中科創(chuàng)達技術智能網聯(lián)汽車發(fā)展

    近日,江蘇省基礎設施建設發(fā)展工作會議在連云港成功舉辦。此次會議聚焦于加快基礎設施建設,深入探討江蘇省
    的頭像 發(fā)表于 12-11 14:29 ?994次閱讀

    連接視覺語言大模型與自動駕駛

    自動駕駛在大規(guī)模駕駛數(shù)據(jù)上訓練,展現(xiàn)出很強的決策規(guī)劃能力,但是面對復雜罕見的駕駛場景,依然
    的頭像 發(fā)表于 11-07 15:15 ?974次閱讀
    連接視覺語言大模型與<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>自動<b class='flag-5'>駕駛</b>